Abstract
- This chapter reviews the present state of the art in using the endohedral fullerenes N@C60 and P@C60 as qubits in a spin quantum computer. After a brief introduction to spin quantum computing (Sect. 14.1), we first discuss (Sect. 14.2) the rich spin structure of these endohedral fullerenes and specific theoretical proposals for architectures and operation models leading to a scalable quantum computer. We then briefly discuss (Sect. 14.3) those aspects of materials science that are needed to realize the proposed architectures. The central part of this chapter (Sect. 14.4) is a review of quantum operations and entanglement realized with endohedral fullerenes. Finally, we review (Sect. 14.5) efforts to realize single spin detection of endohedral fullerenes and conclude (Sect. 14.6) with a brief outlook on outstanding problems to be solved for obtaining a scalable quantum register.